С 10 по 12 июня - офис/склад работать не будет
Бумажное издание
Купить на EUniverse | Купить |
Книга представляет собой доступно изложенное введение в статистическое обучение – незаменимый набор инструментов, позволяющих извлечь полезную информацию из больших и сложных наборов данных, которые начали возникать в последние 20 лет в таких областях, как биология, экономика, маркетинг, физика и др. В этой книге описаны одни из наиболее важных методов моделирования и прогнозирования, а также примеры их практического применения. Рассмотренные темы включают линейную регрессию, классификацию, создание повторных выборок, регуляризацию, деревья решений, машины опорных векторов, кластеризацию и др. Описание этих методов сопровождается многочисленными иллюстрациями и практическими примерами. Поскольку цель этого учебника заключается в продвижении методов статистического обучения среди практикующих академических исследователей и промышленных аналитиков, каждая глава включает примеры практической реализации соответствующих методов с помощью R – чрезвычайно популярной среды статистических вычислений с открытым кодом.
Издание рассчитано на неспециалистов, которые хотели бы применять современные методы статистического обучения для анализа своих данных. Предполагается, что читатели ранее прослушали лишь курс по линейной регрессии и не обладают знаниями матричной алгебры.
Гарет Джеймс занимает должность профессора статистики в университете Южной Калифорнии. Он является автором многочисленных методологических работ в области статистического обучения, посвященных анализу многомерных данных. Концепция настоящей книги во многом отражает содержание его курса по этой теме для студентов, обучающихся по специальности «магистр делового администрирования».
Даниэла Уиттон является специалистом в области биостатистики и занимает должность ассистента в университете Вашингтона. Ее исследовательская работа в основном посвящена применению методов машинного обучения для анализа многомерных данных. Благодаря ее вкладу, методы машинного обучения стали более широко применяться в геномных исследованиях.
Тревор Хасти и Роберт Тибширани являются профессорами статистики в Стэнфордском Университете, соавторами популярной книги «Элементы статистического обучения» и создателями обобщенных аддитивных моделей. Проф. Хасти внес также большой вклад в разработку статистического программного обеспечения на языках R и S-PLUS и создал методы «главных кривых» и «главных поверхностей». Проф. Тибширани предложил метод лассо и является одним из авторов популярной книги «Введение в бутстреп».
Список найденных ощибок опубликован здесь https://github.com/ranalytics/islr-ru
Издание выполнено в цвете!
Оплата
Наш интернет-магазин работает только по предоплате!
Мы принимаем следующие виды оплаты:
Вы так же можете выбрать оплату по платежной квитанции и оплатить по ней покупку в отделении любого банка.
Юридические лица могут выбрать счёт на оплату.
Возврат денежных средств возможен в случаях:
Возврат не проводится в случаях:
Для оформления возврата обращайтесь по электронной почте dmkpress.help@gmail.com.
Доставка:
Курьерская доставка по Москве в течение 7 дней после оплаты заказа.
Стоимость доставки:
Самовывоз возможен в течение суток после оплаты.
Адрес для самовывоза:
115487, г. Москва, проспект Андропова, 38
Доставка почтой России: от 7 до 28 дней с момента оплаты заказа.
Стоимость доставки:
Для добавления комментария необходимо Войти или Зарегистрироваться.
25 июня 2018 в 16:54
23 ноября 2017 в 23:04
Добрый день! Да, это второе издание - в нем исправлены найденные ошибки и опечатки и добавлен предметный указатель.
06 июля 2017 в 11:51
Добрый день, спасибо за предложение - мы рассматриваем к изданию эту книгу.
Добрый день. Да, эта книга есть в pdf версии. Оставьте заявку на электронную почту dmkpress.help@gmail.com.